ENTRANCE EXAMINATION FOR ADMISSION, MAY 2006.

M.Tech. (Computer Science) COURSE CODE: 376

Register Number	
	Signature of the Invigilator (with date)
	(with date)

COURSE CODE: 376

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you − 1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

	They	are				
	(D)	All of the above				
	(E)	None of the abo	ve			
1.	Grap	hs can be repres	ented	with		
	(A)	Adjacency matr	ices		(B)	Adjacency lists
	(C)	Adjacency mult	ilists			
2.	Whi	ch of the following	ng cor	responds to tre	e trave	ersal techniques?
	(A)	Preorder	(B)	Inorder	(C)	Level order
3.	Time	e complexity of tr	ee tra	versal techniq	ue is	
	(A)	O(n)	(B)	O(log n)	(C)	O(n log n)
4.	Whi	ch of the followin	g fall	in the category	of bal	anced trees?
	(A)	AVL trees	(B)	B-trees	(C)	Red-Black trees
5.	Poly	nomial additions	can b	e efficiently do	ne wit	h
	(A)	Stacks	(B)	Queues	(C)	Linked lists
6.	Test	for view serializ	abilit	y is done with t	he hel	p of
	(A)	Precedence grap	ph cor	nstructed from	a sche	dule
	(B)	Labeled Preced	ence g	graph construct	ed fro	m a schedule
	(C)	Undirected gra	ph of	the schedule		
7.	Tho	mas' write rule is	s relat	ted with		
	(A)	Graph based pr	otoco	ls	(B)	Validation based protocols
	(C)	Time stamp ba	sed pr	rotocols		
8.	An a	alternative to log	based	d crash recover	y is	
	(A)	Log record buff	ering		(B)	Shadow paging
	(C)	Database buffe	ring			
9.	Whi	ch of the followin	ng is t	he fundamenta	l oper	ation in relational algebra?
	(A)	Intersection	(B)	Natural join	(C)	Division
376				2		

NOTE: For all the questions 1-100, there are two more choices that are common.

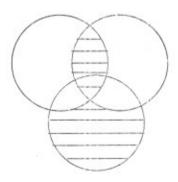
10.	Selec	et, Project and Renan	ne operations i	n relatio	nal algebra are
	(A)	Binary operations		(B)	Unary operations
	(C)	Ternary operations			
11.	Whi	ch of the algorithm is	related with A	AI?	
	(A)	A*		(B)	Constraint satisfaction
	(C)	British museum			
12.	Whi	ch of the following is	the Knowledge	e represe	ntation technique?
	(A)	Semantic nets		(B)	Predicate logic
	(C)	Propositional logic			
13.	Whi	ch of the following is	a search meth	od in AI	?
	(A)	Local beam method		(B)	Hill climbing
	(C)	Greedy best-first			
14.	Infe	rence engine is a con	nponent of		
	(A)	RDBMS (B	AI system	(C)	OODBMS
15.	Uno	ertainity is handled	in		
	(A)	Predicate logic		(B)	Propositional logic
	(C)	Bayesian method			
16.	Oct	ree is used for			
	(A)	2D representation		(B)	3D representation
	(C)	antialiasing			
17.	Obl	ique projection is			
	(A)	Perspective project	tion	(B)	Parallel projection
	(C)	Surface rendering	method		
18.	Col	nen-Sutherland algor	ithm is for		
	(A)	Line clipping		(B)	3D- Viewing
	(C)	Polygon clipping			

- 19. In graphics illumination model, the lighting that comes from all direction is
 - (A) Diffuse lighting

(B) Ambient illumination

- (C) Specular lighting
- 20. Computer Graphics is concerned with
 - (A) Modeling

(B) Rendering

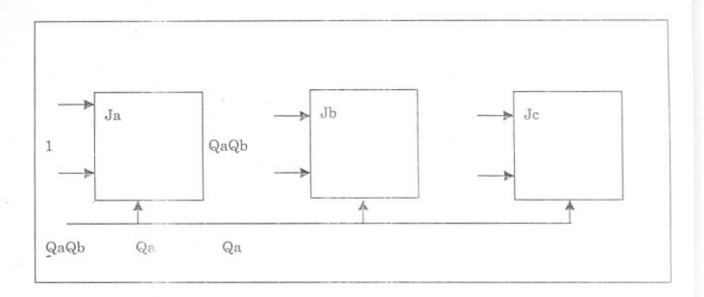

- (C) Animation
- 21. Which are all the factors to be considered while designing a cache?
 - (A) Mapping function
 - (B) Replacement algorithm and cache size
 - (C) Write Policy
- 22. Raid level 3 uses
 - (A) Mirroring

(B) Bit interleaved parity

- (C) Block level parity
- 23. Simplify the Boolean function

F(a,b,c,d) = (0,1,2,5,8,9,10) and give the product of sums

- (A) (c' + d')(a' + b')(b' + d)
- (B) (c+d)(a+b)(b+d')
- (C) cd+ab+bd'
- 24. The Boolean expression for the shaded area in the accompanying Venn diagram is



(A)
$$F(x,y,z) = xyz' + x'y'$$

(B)
$$F(x,y,z) = (x+y)(x'+y'+z)$$

(C)
$$F(x,y,z) = x'y'z + xy$$

25. A Synchronous counter id depicted as follows. If it is currently in state Qa Qb Qc = 101, what will be its next state?

- (A) 110
- (B) 011
- (C) 101
- 26. A floating point number is said to be normalized if
 - (A) least significant bit of mantissa is zero
 - (B) most significant bit of mantissa is zero
 - (C) most significant bit of exponent is zero
- 27. The code which changes by only one bit as it sequences from one number to the next is
 - (A) gray code
- (B) BCD
- (C) Excess-3
- 28. A three state gate is a digital circuit which exhibits 3 states and the third state is a
 - (A) high impedance state
- (B) low resistance state
- (C) high capacitance state
- 29. With respect to the above question the third state behaves like a
 - (A) closed circuit

(B) open circuit

(C) random circuit

30.		ne control informatio nization as	n is in the con	trol n	memory, we call this type of control
	(A)	Hard-coded control		(B)	Hard-wired control
	(C)	Micro-programmed	control		
31.	Whi	ch of these is called C	ontent addressa	ble me	emory
	(A)	auxiliary memory		(B)	extended memory
	(C)	associative memory			
32.	In Ir	ntel 8085 which of the	se is used to res	et oth	er devices
	(A)	reset out (B)	reset in	(C)	reset
33.	whic	ch of the following car	a be called as a fo	eature	of RISC Microprocessor
	(A)	RISC Microprocesso	rs ececutes most	instr	uctions in a single cycle
	(B)	RISC Microprocesso memories	ors have several	gene	ral purpose registers and large cache
	(C)	RISC Microprocesso includes pipelining	ors processes se	veral	instructions simultaneously and thus
34.	Whi	ch of the following is	true about break	point	instruction in a Microprocessor
	(A)	is a debugging too program	l that allows p	rograi	mmer to check the entire section of
	(B)	allows programmer	to pass over an e	entire	section of program
	(C)	MC68020 includes t	his instruction		
35.	The	first OS used in Micr	oprocessors is		
	(A)	Zenix (B)	DOS	(C)	CP/M
36.	Exa	mple of an operating	system supporti	ng ker	nel level threads
	(A)	Windows 2000		(B)	Solaris
	(C)	Linux			
37.	In a	single processor syst	em, mutual excl	usion	can be enforced by
	(A)	Overlapping proces	ses	(B)	Interleaving processes
	(C)	Disabling Interrupt	S		
376			6		

38.		page size is 1K vidual location w			ım nu	imber of bits needed to access ex	very
	(A)	8 bits	(B)	10 bits	(C)	12 bits	
39.		pose the relative s 1K page size, wh				a 16 bit paged memory manager ber and offset?	that
	(A)	Page 0 and offse	et 600		(B)	Page 1 and offset 696	
	(C)	Page 2 and offs	et 257				
40.	aver		10 m	s, rotational de	elay is	acks with 320 sectors per track. 3 ms and the time required to re-	
	(A)	40	(B)	60	(C)	80	
41.	Ŵhi	ch of the followin	ıg is (a	are) True ?			
	(A)	Data Communi	cation	is a part of Da	ta Tra	ansmission	
	(B)	Data Transmis	sion is	a part of Data	Comr	nunication	
	(C)	Data Communi	cation	and Data Tra	nsmiss	sion are synonyms	
	_						
42.		ransmit data be) needed ?	tween	a Mobile Net	work a	and Internet which of the following	ıg is
	(A)	Router			(B)	Gateway	
	(C)	Border Gatewa	y Prot	ocol			
43.		en a machine tha Internet, then its			is to 1	receive a message transmitted thro	ugh
	(A)	derived from its	IP ac	ldress itself	(B)	obtained from a router	
	(C)	a part of the IP	addre	ess			
44.	Pick	the Odd one out					
	(A)	GSM	(B)	CDMA	(C)	CSMA/CD	
45.	The	device which acc	epts f	rames and tran	smits	it over telephone lines is a	
	(A)	Packet Switch	Excha	nge	(B)	Modem	
	(C)	Frame Relay					

46.		ne worst case exect the Nth elemen		on of Insertion	sort,	the number of comparisons made to			
	(A)	One	(B)	N-1	(C)	N(N-1)			
47.		ne best case execu element in its cor			the n	umber of comparisons made to put an			
	(A)	One	(B)	N-1	(C)	N(N-1)			
48.	Best	Case, Worst Cas	e and	l Average Case o	of an a	algorithm depend on			
	(A)	Input			(B)	No. of Loops			
	(C)	No. of iterations	5						
49.		Binary Search, essful or unsucce			numb	er of iterations required to end in a			
	(A)	log n	(B)	2k-1-1	(C)	k			
50.	Whi	ch of the following	g abo	ut Branch and I	Bound	l is (are) True?			
	(A)	Branch and Bou	nd is	a heuristic sear	ch te	chnique			
	(B)	Branch and Bou	nd h	as a higher time	comp	plexity than that of Backtracking			
	(C)	Branch and Bou	nd a	nd Back Trackir	ig res	ult in a sequence of optimal decisions			
51.	Why	do most languag	es no	t specify the ord	der of	evaluation of arguments?			
	(A)	Because it does	n't ch	ange the meani	ng of	programs.			
	(B)	(B) Because it's already constrained by the precedence and associativity rules.							
	(C)	Because many i		tant code impro	veme	ent techniques depend on being able to			
52.	Con	sider the followin	g CF	G:					
	list -	$\rightarrow ids$;							
	ids -	$\rightarrow ids$, id							
	ids -	→ id							
	Whi	ch of the followin	g is a	ı sentential form	ı for t	his language?			
		id, id, ids;			(B)	ids, id, id;			
	(C)	ids, ids ;							
0.77									

- 53. What is the significance of L-attributed attribute grammars?
 - (A) They can be evaluated in the course of an LL parse.
 - (B) They are the most general class of attribute grammars that can be evaluated in linear time.
 - (C) Their attribute flow is strictly bottom-up.
- 54. Which of the following is least likely to be used to generate code for a switch statement?
 - (A) hash table

- (B) linear sequence of tests
- (C) balanced search tree
- 55. What is a bootstrap compiler?
 - (A) A compiler for language x is written in language x
 - (B) A compiler for language x is written in language y
 - (C) A compiler for language x for platform a is written in language y in platform b
- 56. Why don't you need a static link in C?
 - (A) Because a display is used instead.
 - (B) Because there's already a separate frame pointer.
 - (C) Because C doesn't have nested subroutines.
- 57. Why does Java provide mix-in inheritance instead of full multiple inheritance?
 - (A) Because it avoids discontiguous objects.
 - (B) Because it imposes no costs on programs that use only single inheritance.
 - (C) Because it eliminates the distinction between replicated and shared repeated inheritance.
- 58. Why might one wish to pass a parameter by value/result, rather than by reference?
 - (A) To avoid the need for indirection
- (B) To save space in the stack.
- (C) To avoid modifying the argument.
- 59. Why are in-line functions useful?
 - (A) They eliminate subroutine-call linkage overhead.
 - (B) They enable the compiler to perform more code improvement.
 - (C) They may improve I-cache locality.

60.	Und	er name equivale	ence, t	wo variabl	es have the	e same type if			
	(A)	they have the s	ame ir	iternal stri	octure				
	(B) they can hold the same set of values								
	(C)	they were decla	red us	ing the sa	me lexical	occurrence of a t	ype construct	or	
61.	Whe	n it will be wron	g with	this initia	lization?				
		char *p = mallo	c(10);						
	(A)	p is a static var	iable						
	(B)	p is a global var	riable						
	(C)	p is a external	variab	le					
62.	Wha	at will happen, if	you us	se the follo	wing fragn	nent in your pro	gram?		
		typedef struct (
		char	*item	;					
		NOI	DEPTI	R next;					
) *NODEPTR;							
	(A)	compile-time er	ror						
	(B)	run-time error							
	(C)	error-free execu	ition						
63.		at will be the value the value 5?	ue of	a[i] after tl	ne executio	on of the following	ng statement,	where i	
		a[i] = i++;						**	
	(A)	5	(B)	6	(C)	no change			
64.	# in	clude <stdio.h></stdio.h>							
	void main()								
	{								
	int a	a=10,b=5; int c=3	,d=3;						
	if ((a	a<++b) && (c=d+	+))						
	prin	tf("%d %d %d %d	d", a,b	,c,d);					
	else	printf("%d %d %	d %d"	, a,b,c,d);					
)								
	(A)	10 5 3 4	(B)	10633	(C)	10 5 3 3			
	·/		,/		(3)				
376					1.0				

```
Which is a ternary operator?
65.
     (A) ?
                          (B) ^
                                              (C) ~
66.
     #include <stdio.h>
     void main()
     char *p="abc";
     char *q="abc123";
     while(*p=*q)
     print("%c %c",*p,*q);
     (A) aabbcc123
                                              (B) compilation error
     (C) infinite loop
67. Which of the following is invalid?
     (A) a*=b;
                          (B) a>>=b;
                                              (C) a^{**}=b;
68. Identify the incorrect one
     (A) if (c=1)
                          (B) if (c!=3)
                                              (C) if (a<b) then
69. Which one has no L-Value
                                              (C) 2
     (A) a[i]
                               *(a+i)
                          (B)
70. main()
          printf("\nab");
          printf("\bsi");
          printf("\rha");
     (A) asiha
                          (B) absiha
                                             (C) hai
```

11

71.	Whi	ch of the followin	g is a	valid C/C++	function	pointer definition	
	(A)	int *(f)();	(B)	int* f();	(C)	(int*)f();	
72.	Wha	at is "multiple inh	erita	nce"?			
	(A)	When a parent	class l	nas two or m	nore child	classes	
	(B)	When a base cla	ıss ha	s two or mor	re derived	l classes	
	(C)	When a child cla	ass ha	s two or mo	re parent	classes	
73.	Whi	ch of the followin	g is n	ot a typical 1	relationsh	aip in an object oriented system?	
	(A)	Inheritance			(B)	Instantiation	
	(C)	Aggregation					
74.	In th	he Booch notation	, a clo	oud with a so	olid outlin	ne represents:	
	(A)	a comment or ex	cplana	atory note as	ssociated	with a class.	
	(B)	a class.					
	(C)	an object.					
75.	Whi desi		ing is	one of Str	ous trup 's	"rules-of-thumb" for object-orie	ented
	(A)	Optimize early			(B)	Maximize your interfaces	-
	(C)	Don't use public	data	members			
76.	Wha	at is "encapsulatio	n"?				
	(A)	The division of	a prog	ram into inc	dependen	t modules	
	(B)	The aggregation	of da	ıta members	within a	class	
	(C)	The aggregation	of fu	nction mem	bers with	in a class	
77.	Whi	ich is the correct s	syntax	k if we wish	class D to	publicly inherit from class B?	
	(A)	class D: public:	B {};		(B)	class D: public B ();	
	(C)	class D public: 1	B {};				
376					1.2		

78. Friend functions are useful because:

- (A) They allow us to break the encapsulation of any class whenever we want to, which makes coding much easier since we don't have to worry about respecting the class interface.
- (B) They allow us to break the encapsulation of other user-defined classes whenever we want, thereby enabling us to improve efficiency.
- (C) They allow us to break encapsulation in a controlled manner, which ensures that efficiency does not compromise maintainability.
- 79. Apart from operator=, the operators most commonly overloaded are operator<< and operator>>. Why?
 - (A) Because left- and right-shifting is a very common task in programs.
 - (B) Because they make it easy to do I/O on user-defined classes.
 - (C) Because they are the easiest to overload.
- 80. If both MyClass::operator+ and MyClass::operator= are overloaded, what is the effect on MyClass::operator+=?
 - (A) MyClass::operator+= will automatically be made invalid, and the error message will suggest that the user use MyClass::operator+ and MyClass::operator= instead.
 - (B) MyClass::operator+= will automatically be overloaded to call MyClass::operator+ and then MyClass::operator=.
 - (C) MyClass::operator+= will automatically be overloaded to call MyClass::operator= and then MyClass::operator+.
- 81. Which of the following operators cannot be overloaded?
 - (A) (dot)

(B) ::(scope resolution)

- (C) ?: (conditional)
- 82. Here is a line of Java code: weeks_in_year = (int) tax_rate; Without having seen the types of the variables given during declaration, what is the most reasonable guess concerning them?
 - (A) weeks_in_year is an int and tax_rate is not.
 - (B) tax_rate is an int and weeks_in_year is not.
 - (C) Both weeks in year and tax rate are ints.

83.	Here is a line of code: System.out.println("Hello World"): In it, the word println is a(n):	.S					
	(A) Class (B) Object (C) Method						
84.	What is the output of the following line of code: System.out.println("\\\"");						
	(A) \\ (B) \" (C) ""						
85.	Here is a line of code: Point mypoint = new Point(); The two occurrences of the word "Point" in the line are, respectively:						
	(A) A call to a constructor and a declaration of an object reference.						
	(B) Two declarations of an object reference.						
	(C) Two calls to a constructor.						
86.	The disadvantage with compile and go-loader is, it						
	(A) requires more memory (B) cannot handle complex functions						
	(C) cannot link library files.						
87.	Dynamic loading is also known as						
	(A) relocating loader (B) load-on-call						
	(C) overlay manager						
88.	Which of the following is not supplied by the assembler to the loader						
	(A) length of the object code						
	(B) relocation information						
	(C) starting address where object code is to be loaded						
89.	Parsing involves						
	(A) converting the source program into tokens						
	(B) syntactic analysis of tokens						
	(C) generation of pseudo code						

90.	Whi	ch of the following are machine independent assembler features?
	(A)	expressions& literals
	(B)	relocation
	(C)	addressing modes
91.	Proc	ess framework activities are populated with
	(A)	milestones
	(B)	Work product
	(C)	QA points
92.		best project team organizational model to use when tackling extremely difficult clems is
	(A)	controlled centralized (B) democratic decentralized model
	(C)	controlled decentralized model
93.	Incr	remental model differs from RAD in terms of
	(A)	operation model delivered with each increment
	(B)	faster development cycle
	(C)	c.handling complex problems
94.	Proc	cess indicators enable a software project manager to
	(A)	assess the status of an on-going project
	(B)	track potential risks
	(C)	adjust work flow or tasks
95.		ich of the following is an advantage of using function points (FP) as a measure of functionality delivered by a software application?
	(A)	FP can be computed before a design is completed
	(B)	FP is a language dependent measure.
	(C)	FP is a function of LOC.
96.	The	simplest recovery technique is called return.
	(A)	implicit (B) explicit (C) forced

97.	An example for WYSIWYG is							
	(A)	Windows						
	(B)	MS DOS						
	(C)	LaTeX						
98.		refers to a different set of activities that ensure that the software that has built is traceable to customer requirements.						
	(A)	Verification						
	(B)	Validation						
	(C)	Beta test						
99.	testing of software is predicated on close examination of procedural detail.							
	(A)	Black-box						
	(B)	White-box						
	(C)	Gray-box						
100.	PCN	IM can be expanded as						
	(A)	People Capability Maturity Model						
	(B)	Process Capability Maturity Model						
	(C)	Product Capability Maturity Model						